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Abstract. As in the Landauer–B̈uttiker approach to transport, a transmitter is, at fixed energy,
characterized by its reflection and transmission coefficients. Generalizing a prior approach, we
establish a variational principle to determine, without magnetic field, the distribution of the
current over the different channels if the transmitter is coupled incoherently to its surroundings.
For transmitters coupled with each other, a general demand of additivity defines the form of the
variational functional. Contacts are treated as special transmitters, and, as a test, the results of
the standard model are reproduced.

A typical serial resistance is defined as the resistance within a long incoherently coupled
chain, with no regard to contacts and reservoirs. This resistance is strictly additive. It is
shown that well within the chain a relaxed current and density distribution is established that
is independent of the conditions at the ends of the chain. This distribution coincides with the
optimal distribution that minimizes the resistance of each of the single transmitters that are the
building blocks of the chain. For a sufficiently long chain, the serial resistance is determined
by the linear dependence of the inverse total transmission on the number of single transmitters.

The relaxational behaviour of a long chain implies corresponding features of the reflection
and transmission matrices in the asymptotic regime, especially a factorization of the transmission
matrix, expressing memory loss with respect to the ingoing and outgoing channels.

1. Introduction

In a previous paper [1], we addressed anew an old question: what is the resistance of an
elastic transmitter between two probes? In the spirit of Landauer—cf. [2] for example—we
have replaced the usually assumed ideal leads by resistive leads. In such leads the carriers
can, via channel–channel transitions, adapt their channel distribution in such a manner as
to facilitate transport through a given transmitter, i.e. to populate transparent channels and
to avoid the others. Far from the perturbing transmitter, an unperturbed current and density
distribution is established, also due to channel–channel transitions, where a local chemical
potential (or its on-energy-shell precursor) is well defined. This allows a sound definition
of a resistance. The transport within the leads has been treated within a rather simple
semi-classical kinetic method. As a by-product of this approach, we found that the solution
for the coupled system of a transmitter and the resistive leads attached to it can be found
by minimizing a certain variational functional. This functional is strictly additive in parts
corresponding to each of the two leads and to the transmitter, each part separately is positive
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definite, and the simple mathematical form of the lead functional points to the interpretation
in terms of dissipated power.

In [1], the needs to represent the lead kinetics, and to couple it with the reflection–
transmission properties of the transmitter and—mainly—the rather cumbersome procedure
to prove the existence of the variational functional and to express it, at least for special
cases, explicitly as a functional of the currents themselves has tended to mask the generality
of the approach. In this paper we take, in a somewhat axiomatic manner, the variational
principle as the starting point. In this context, it is quite natural to consider, instead of
the special two-probe case, a general network of transmitters, connected with each other in
parallel or in series and with the ‘external world’ via any number of leads. In this paper,
resistive leads are not revisited.

We note that the concept of carriers that adapt their distribution over channels or
directions to a given obstacle has been successfully applied recently by Kunze to similar
problems, i.e. to a localized obstacle in a quantum film [3] or in the 3d bulk [4] and to a
planar defect of grain boundary type [5]; cf. also [13]. All of these results, some of them
belonging in full to classical transport theory, are beyond perturbational approaches.

We state now the main conceptual points of our paper.

(a) We study, without magnetic field and without inelastic processes, dc transport of non-
interacting particles. The current is driven by density differences or gradients, respectively,
i.e. there is no driving force (no electric field). Because for an ensemble of many electrons
this situation cannot be realized, the results must be translated, at the end, to the force case.
This can be, as usual, achieved via the Einstein equivalence between differences in voltage
and chemical potential. This equivalence only works if a chemical potential can be really
defined, at least locally. This is the case in reservoirs or in resistive leads far away from
the transmitter.

(b) Quantities like resistance or conductance cannot be defined for a subsystem if there
are coherent interactions with others. Only if these effects are either destroyed or can
be neglected, i.e. if the subsystem is coupled incoherently to its surroundings, can it be
considered in the classical sense as a subunit of the whole system. The incoherence is
maintained especially in the standard model [6] due to the very concept of reservoirs.
Between transmitters we could also imagine connecting leads where weak phase-breaking
processes destroy coherence without contributing appreciably to the resistance. In other
cases the subdivision of a larger system into incoherently coupled parts is sensible in order
to mimic phase-breaking processes that really occur within them. If (and only if!) the
incoherence condition is fulfilled, classical combination rules should hold. For transmitters
in series this means additivity of their resistances.

For a general network of incoherently coupled transmitters, the corresponding additive
physical quantity is interpreted as the dissipated power. We will show in section 2 that the
general demand of additivity is very stringent; in fact it defines the form of the functional
wanted.

(c) Apart from in the simplest one-channel case, a transmitter is a much more
complicated object than a classical ‘resistor’ where the situation is completely defined if
the total current is given. For a typical transmitter, the resistance depends on the specific
distribution of the given total current over the channels (lateral modes) that are defined for
all leads. This means that a transmitter cannot be described simply by a single ‘resistance’ or
‘conductance’ but must necessarily be defined by a functional that determines this quantity
for all possible current distributions. Depending on the coupling with others and with
external leads and/or reservoirs, a specific current distribution is finally established.
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(d) The dissipation functional is employed to establish a variational principle: the correct
current distribution yields minimal dissipation. This is in accord with the principle of
minimal entropy production [7] that rules, in the framework of the thermodynamics of
irreversible processes, a stationary non-equilibrium state. Nevertheless it seems to be not
quite the same because the physical transport situation in microstructures cannot be fully
described with the concept of local thermodynamic equilibrium states.

The dissipated power has to be minimized under the constraint of given total currents
in all external leads, varying the distribution over the channels for each external lead.
For internal leads, connecting different transmitters, not only the total currents but even
their distribution over all of the channels are precisely determined by the given transition
coefficients of the transmitters forming the network if the external current distribution is
completely specified. The complexity of a network is reflected in the difficulty of solving
this question. Another variant, followed in sections 2 and 3, is to consider formally the
whole network as a single transmitter. The task is then to construct the transition coefficients
for this complex from those of its constituents. This remains also to be done if necessary—
cf. [8] for the calculation of the corresponding amplitudes.

There is no general proof for the validity of the variational principle stated above. In the
present paper, we only show, generalizing the discussion in [1], that it correctly reproduces
the standard model where ideal leads couple via contacts to reservoirs.

The specific problem in the present paper is, for transmitters in series, the behaviour
of the current distribution and the corresponding resistance in a (long) chain. A single
transmitter within the chain is neither in the situation modelled in the standard model nor in
that where resistive leads are attached to it. Whereas a huge amount of work has been done
on calculating the properties of complex single transmitters with all internal interference
effects, this problem has been scarcely studied. The current distribution in a long chain
should be mainly a property of the chain itself, nearly independent of the external leads
and reservoirs for the chain as a whole. For a single transmitter as a constituent of a long
chain, we envisage a certain kind of embedding, and a definite resistance should correspond
to this situation. We call it typical serial resistance.

The relaxational mechanism that produces the well-defined ‘chain distribution’ is also
responsible for the dependence of the chain reflection and transmission matrices on the
number of constituting single blocks. In the present paper, this problem is only briefly
considered in the asymptotic regime where the transmission matrix for sufficiently long
chain segments factorizes.

This paper is organized as follows. In section 2 the variational principle is restated and
generalized. We prove that the functional is positive definite. In section 3 the variational
principle is used to reproduce the well-known results of the standard model. This allows
one to treat the contacts to the reservoirs as special transmitters. In section 4 it is shown
that in a long chain, sufficiently far from its ends, just that channel distribution evolves that
is optimal for each of the single blocks. Finally, in section 5, the asymptotic reflection and
transmission properties of a chain are discussed.

2. The variational functional

Consider an arbitrary elastic transmitter (often called a block in the following) coupled to
its surroundings via a set of channelsn. These channels can be realized by lateral modes
of quantum wires but, allowing for continuous spectra, other situations are possible too. In
each channel the resulting current may flow towards or away from the transmitter, depending
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on the specific situation. The transitions between the channels via the block are described
by a set of normalized transition probabilitiesTnm from m to n,

∑
n Tnm = 1. Without any

magnetic field, reciprocity holds in the formTnm = Tmn, and the transition probabilities
form a symmetrical matrix.

Figure 1. Some basic notation used in sections 2 and 3.

For each channel, we define currents as positive if they flow to the transmitter just
considered. Current balance means then that

∑
In = 0. The currents can be considered as

the result of incident currentsI inc
n ; cf. figure 1 for notation.The total incident currents are

positive by definition. They comprise, however, a partI inc
n = constant that characterizes the

current-free equilibrium state. ThereforeI inc
n < 0 becomes possible for the only relevant

current-proportional part.I inc
n in all channels being given, the resulting currents are

In = I inc
n −

∑
m

TnmI inc
m . (1)

For a general network of incoherently coupled scatterers, the dissipated powerPB must be
additive with respect to the subsystems. Because all of the single channelsn can contribute,
alone or grouped in any way to form leads, an additive formPB = ∑

Pn should exist. If
channeln, within an ideal lead, couples two blocks, this channel disappears as an external
one for the combined system. This means thatP (1)

n + P (2)
n = 0 if 1 and 2 denote the two

blocks. This relation must be the mathematical consequence of a simple and general linear
relationship between them. There is only one such relation, namely

I (1)
n = −I (2)

n = [
I (1)
n − I (2)

n

]inc
. (2)

One easily confirms that

Pn = In(2I inc
n − In) (3)

fulfils the requirement of additivity; thus

PB =
∑

s

P
(s)
B P

(s)
B =

(s)∑
n

P (s)
n (4)

holds for any network of subblockss. Note that the arbitrarinessI inc
n → I inc

n + constant of
the incident currents does not affectPB . For the special case of two leads, the equivalent
formula has been derived as equation (58) in [1]. (Unfortunately there is a printing error in
this formula: the last sign should read ‘+’.)

Because all interference effects outside the transmitter are neglected, we can decompose
there currents and carrier densities according to the two possible directions of motion in
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each channel, i.e.

ρn = ρ+
n + ρ−

n In = vn(ρ
+
n − ρ−

n ). (5)

We have then

I inc
n = vnρ

+
n = 1

2
(vnρn + In) (6)

and

PB =
∑

n

Invnρn. (7)

vn are the channel-specific velocities. In the form (7), the internal compensation for
connected blocks and thus the additivity (4) are obvious because the density is the same for
both blocks.

BecauseI inc
n = constant yields no net currentsIn, the incident currents cannot be

reconstructed unambiguously from the currents. Therefore we considerPB as a functional
of the incident currents alone:

PB = Ĩ(2Iinc − I) = Ĩinc(1 − T)(1 + T)Iinc = Ĩinc(1 − T2)Iinc. (8)

Here we have introduced vector and matrix notation for all of the currents and transition
probabilities. Whenever convenient, it will be also used in the following.

If the interpretation in terms of dissipated power is correct,PB > 0 must hold. This is
true if the real eigenvaluesti of the (symmetrical) matrixT obey

−1 6 ti 6 1 t2
i 6 1. (9)

This is indeed fulfilled for matrices with non-negative elements and a normalized sum for
each line or row; cf. [9]. We present a simple argument. Together withT all Tm, m > 1
integer, are matrices of the same kind, representing a possible set of transition probabilities.
The eigenvalues of such a matrix are clearly restricted in absolute value, and this property
remains valid forTm if (9) holds.

3. Contacts and the standard model

In accordance with typical experimental situations, we combine subsets of channels{n(α)}
in groupsα to represent leads. Within such a group, transitions fromn(α) to n′(α) are
reflections with respect to the leadα; all others are transmissions between different leads.

We consider now a transmitter which joins a given number of leadsα, β, . . .. We further
assume that all of the transition coefficients are simply given byTnm = N−1 whereN is
the total number of channels; see below, however. This implies that all of the channels
are coupled very smoothly to the block, for example by an adiabatic widening of the leads.
Otherwise some ‘direct reflection’ at the ‘entrance’ to the block would appear. Relation (1)
gives nowIn = I inc

n +constant. Such a constant term, however, reflects just the arbitrariness
of the incident currents, corresponding to the always-present current-free solution. Thus we
can simply ignore that term, and get

PB → PC =
∑

n

I 2
n = ĨI (10)

As indicated by the notation, this is a model of a contact (a soldered joint) where different
channels (leads) are connected. With a slight modification of the model, we have already
used [1] this expression to describe the contacts between leads and reservoirs. If the present
model of contacts is correct, the simple expression (10) can be used for all kinds of contacts
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acting as couplers, splitters or mixers that are characterized by sufficient complexity to
ensure the assumed memory loss and by smoothness to avoid direct reflections. To each
channel where the current enters or leaves such a contact a, ‘resistance’ of value 1 is
attributed, independently of the number of channels and their grouping to form leads.

The simple relationTnm = N−1 may strictly hold only on average with respect to the
configuration of the contact; fluctuation problems remain open to question. Also elastic
enhancement due to anomalous backscattering [10] is beyond the simple contact model.

What we really need in the present context is a description of contacts between leads
and (large) reservoirs. For this special but most important case, the result (10) can be
reproduced quite generally. At first, due to the very large numberNR of channels on the
reservoir sideR, the termĨRIR ∝ N−1

R can be neglected. The incident currents there are
those of an equilibrium state, i.e.I inc

m |R = A = constant, and this givesP R
C → 2A

∑
IR
m

for the reservoir side of the contact. There are no reflections on the lead side; the contact
acts like a black body. Thus we have

In(L) = I inc
n(L) −

∑
m

Tn(L), m(R)I
inc
m(R) = I inc

n(L) − A (11)

where the normalization of the transition elements, now without reflection on the lead side
L, is employed. Equation (11) allows us to eliminate the incident currents on the lead side
of the contact with the result

PC = P L
C + P R

C =
(L)∑
n

I 2
n + 2A

[
(L)∑
n

In +
(R)∑
m

Im

]
=

(L)∑
n

I 2
n . (12)

The square bracket is zero due to the overall current balance. Thus we arrive again at the
form (10), but now applied to the lead side of the contact only.

Note that the second term in (11) is just the current injected from the reservoir into the
lead. Its equipartition over all of the lead channels follows from the absence of reflections.
With a magnetic fieldB applied, we getTn(−B) for the sum of transmission coefficients
appearing in (11); thusTn = 1 again because this relation does not depend onB at all and
especially not on its sign.

In contrast to the considerations leading to the formally equivalent relation (10), the
treatment of the lead–reservoir contact is not burdened by fluctuation problems. Equation
(12) remains correct for fluctuating currents, even if the internal properties of the contact
should fluctuate.

We denote as ‘standard’ the model [6] where a transmitter is connected via ideal leads
and contacts to reservoirs that feed all channels of a given lead with the same incident
current, but channels in different leads with different currents according to the specific
chemical potentials of the reservoirs.

For the two-probe case [1] we have already demonstrated that the dissipated power
P can be used as a variational functional: the correct distribution of the current over the
channels minimizesP . Now we generalize this variational principle to the case of a block,
connected with any number of reservoirs via ideal more-channel leads and contacts. For
the standard model, the functionalPst consists of the block termPB and the contact term
PC . The contacts (10) just compensate the corresponding term in the block functional (3),
(4). This is essential for the simplicity of the standard result. We get

Pst = PB + PC = 2
∑

n

I inc
n In = 2ĨincI. (13)

Due to the equivalence of all channels for the construction ofPB as well ofPC, Pst itself
does not depend on theα-grouping of channels to form leads.
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Now the leads come into play because the total currentsIα in the different leads can be
fixed independently. Their specific values are not determined by the variational principle
that only rules the distribution of the current overcoupled channels. Given values ofIα

are restrictive conditions for the variational principle. We defineΘα as a vector whose
components are 1 for each channel belonging to leadα and zero otherwise. Then we have

Iα = Θ̃αI = Θ̃α(1 − T)Iinc. (14)

With Lagrangian multipliers 2λα the incident currents can be varied independently with the
result

I = 1

2
(1 − T)

∑
α

λαΘα. (15)

Comparison with (1) shows thatI inc
n(α) = λα/2.

The currents in all channels for all leads are now uniquely determined. The equal-
feeding rule is a consequence of the variational principle and the properties of a contact.
This does not come as a surprise because this feature of the injection process had already
been found when the functionalPC of a contact was constructed; cf. the text after (12).

The minimal value ofPst is

Min Pst =
∑

α

Iαλα. (16)

Obviously the parametersλα are determined only up to a common constant; remember that∑
Iα = 0. λα is closely related to the chemical potentialµα in the reservoirα. In fact,

at zero temperature at least,λα = (g/πh̄)µα with spin factorg = 2 for electrons yields
Büttiker’s formulation [6] of the standard model. The parametersλα determine the currents
Iα; for given Iα they have to be adjusted so as to produce these. We find from (15)

Iα = 1

2
(Nα − Rα)λα − 1

2

∑
β 6=α

Tαβλβ (17)

whereNα is the number of channels in leadα, and, as usual,Rα andTαβ gather together all
reflection or transmission coefficients that correspond to the given lead grouping of channels.
Equation (17) is the basic equation in Büttiker’s formulation [6].

4. Optimal current distribution and resistance in a chain

The resistance of a given transmitter is not an intrinsic property; rather it is defined only with
respect to a specific kind of embedding that inevitably influences the current distribution
at the transmitter interface and thus its resistance. This may not be a serious problem for
small probes where the standard model applies. It becomes a problem, however, if one
wants to describe bulk properties, especially in localization theory where at the end, with a
certain temperature-dependent phase-breaking length, blocks of that length scale are coupled
incoherently, i.e. according to the classical rules. Then each of these ‘coherence blocks’ is
generally not in a position like a microprobe between, for example, reservoirs. Instead its
environment is composed of all of the other coherence blocks, all more or less the same.
Here we will discuss only the serial problem for identical transmitters. In a long chain of
such transmitters, one expects a current distribution that only at the outermost blocks is
strongly influenced by external leads and/or contacts. Well within the chain, the distribution
should characterize the chain itself, and, in the sense of being its constituents, the single
blocks, too.
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There are two different questions. The first one is very simple: what distribution
of current and density minimizes the resistance of a single transmitter and what is the
corresponding minimal value of the resistance? The second one is more involved: is there
really a relaxational mechanism for establishing a certain distribution that is specific for the
chain, and how are this distribution and the corresponding value of the resistance specified?
We will prove that this distribution is exactly the optimal single-block distribution. There
is thus complete serial compatibility, and the minimal resistance is realized in a long chain
of identical transmitters.

Employing the variational principle, it is easy to find the optimal current distribution for
a single transmitter. For simplicity, we restrict the discussion to a transmitter with equivalent
left- and right-hand sides,Rl = Rr = R = R̃, and a left–right symmetrical transmission
matrix T. On symmetry grounds, the minimum ofPB is attained forIl = Ir = I. (Unlike
for the general case—sections 2 and 3—the currents are now counted as positive if they
flow from the left to the right, i.e. we have a change in the sign convention forIr .) The
functional (3) takes the simplified form

PB = I 2R = 2Ĩ(I inc
l − I inc

r − I) = 1

2
(Ĩl − Ĩr )

inc(1 − R + T)(1 + R − T)(Il − Ir )
inc

(18)

which defines the resistanceR. Varying the difference of the incident currents under the
constraintI = constant, we find the optimal distribution

Io ∝ (1 + R − T)−1(1 − R + T)1 (19)

and the minimal resistance

1
2Ro =

[
1̃(1 + R − T)−1(1 − R + T)1

]−1
. (20)

The current distribution (19) on both sides corresponds to a density distributionvρ ∝ 1
there. This can be seen from the relations (24); cf. below. It means that the lateral density
distribution is the same as in the equilibrium state.

The resistance formula (20) is obviously of the Landauer type, i.e.Ro = 0 without
reflections. It yieldsRo = 2R/T in the one-channel case, of course. In the limit of small
transmission,(1 + R − T)1 ≈ (1 + R + T)1 = 2 × 1, one finds again the standard result
Ro ≈ 2T −1

tot . If all of the channels are equivalent,R1 ∝ T1 ∝ 1, we get

1

2
Ro = T −1

tot − N−1
c (21)

with Nc as the number of channels; cf. equation (32) in [1] for the case of different channel
numbers on the two sides, and also a recent paper [13] of Landauer for a discussion of a
simplified model.

For the special case of only two channels (on either side), we have calculatedRo

numerically for a large number of transmitters with randomly chosen parameters. The
results (figure 2) show thatRo is close to the reference value (21) in most cases. For
strong inequivalence of channels, however, it can be significantly lower. Such a change is
promoted by reflective and hindered by transmittive channel coupling.

Of some interest—cf. also the next section—is a transmitter with factorized transmission
matrix T ∝ t ◦ t̃. Employing the matrix inversion formula[

A + cu ◦ ũ
]−1 = A−1 − A−1u ◦ ũA−1

ũA−1u + c−1
(22)
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Figure 2. Minimal resistance for randomly chosen transmitters with two channels each. The
total transmission is fixed atTtot = 1, i.e. at half its maximal value. The resistance (21) for two
equivalent channels, suited as a reference value, is thus 1. For the meaning of the three points
marked by (a), (b), (c), see figure 4.

we get from the general expressions (19), (20)

Io ∝ (1 + R)−1(1 − R)1

1
2Ro = T −1

tot −
{

2
[
1̃(1 − R)1

]−1
−

[
1̃(1 + R)−1(1 − R)1

]−1
}
.

(23)

Due to the reflection-transmission balance, the reflection matrixR must obey(1 − R)1 ∝ t,
in other respects it remains unspecified here.

The first term in (23) is the resistance within the well-known standard model [6], i.e. it
corresponds, in the general case at least, to a current distribution that differs fromIo and
comprises in any case both contact resistances. Therefore the term in the curly bracket has
to be positive to yieldRo < 2T −1

tot . The expression in (23) meets this condition. This can
be easily shown to follow from the property−1 6 ri 6 1 of the (real) eigenvalues ofR;
cf. [9], p 55.

Now, independently of the minimal principle, we ask: is it possible to maintain a
characteristic current (and corresponding density) distribution that remainsconstantalong
a chain of identical, incoherently coupled transmitters? The answer is ‘yes’, and the ‘chain
distribution’ is just the optimal ‘single-block distribution’ (19). The latter statement is
simple but a bit strange, for it means that it is not necessary to effect a compromise where
a non-minimal resistance is accepted in order to achieve self-consistency along the chain.

For a proof, we eliminate in the basic reflection–transmission equations the incident
currents in favour of the densities; cf. (5) and (6). The results are relations between the
currents and densities; on the two sides of a transmitter. They read

Il + Ir = (1 + R − T)−1(1 − R + T)(vρl − vρr ) ≡ M1v(ρl − ρr )

Il − Ir = (1 + R + T)−1(1 − R − T)(vρl + vρr ) ≡ M2v(ρl + ρr ).
(24)
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As is seen merely by inspection,Il = Ir = Io and vρl,r ∝ 1 solves (24). More
important for the chain problem,Ir = Io andvρr ∝ 1 follows from the same relations for
the left-hand side. Indeed, withM−1

1 Il ∝ 1 and M2vρl = 0 we find, combining the two
lines of (24),(1 − M−1

1 M2)vρr ∝ 1 with

1 − M−1
1 M2 = 4(1 − R + T)−1T(1 + R + T)−1 (1 − M−1

1 M2)1 ∝ 1. (25)

This yieldsvρr ∝ 1 and thusIl = Ir according to the second line of (24)—i.e. it proves
the statement above: if the optimal ‘single-block distribution’ is reached in a chain, it
transforms itself to the neighbour intervals.

The real physical question is more challenging. We should show that any distribution,
corresponding to an arbitrarily given situation at the ends of the chain, relaxes to the optimal
distribution well within. To study this problem, we decouple the equation system (24) to
find equations for the current or the density separately. This is achieved by going from the
first-order differences of currents and densities in (24) to second-order differences, involving
three neighbouring intervals along the chain. We find

12Im ≡ Im+1 − 2Im + Im−1 = M(Im+1 + 2Im + Im−1) with M ≡ M2M−1
1

(26)

and a similar relation forv 12ρ whereM is replaced by the transposed matrixM̃ = M−1
1 M2.

The two matrices have the same eigenvaluesmλ but different eigenfunctions:

Muλ = mλuλ M̃vλ = mλvλ

ũλvλ = δλλ

(27)

that are related with each other via

uλ ∝ M1vλ. (28)

The eigenvalues can be represented in the form

mλ = ṽλMuλ

ṽλuλ

= ṽλM2vλ

ṽλM1vλ

. (29)

See (24) for the definition ofM1 andM2.
As usual, the eigenvalues determine the essential properties of the relaxation process.

The eigenvaluem0 = 0 yields the stationary solutionvρ0 = v0 ∝ 1 andI0 ∝ M11 ∝ Io.
In contrast toM or M̃, theM1,2 are symmetric. Thus they have real eigenvalues. These are
generally positive, with the zero eigenvalue ofM2 as a trivial exception. This important
property follows fromPB > 0; see (8) and (9) for the general proof. Specializing to the case
of a transmitter with only two leads, as studied now, one gets the form given in equation
(60) of [1]. If the transmitter is left–right symmetric and the incident currents from the
left and from the right are equal we find that 1− (R + T)2 = (1 + R + T)(1 − R − T)

is a positive semi-definite operator; if they differ only in sign this statement follows for
1 − (R − T)2 = (1 + R − T)(1 − R + T). This proves that alsoM1 and M2 are positive
(semi-)definite.

Going back to the eigenvalue problem (27), this property ofM1,2 renders it possible to
symmetrize the equations (27) by usingUλ = M1/2

1 uλ or Vλ = M1/2
2 vλ within the scheme

of real matrices. Therefore not onlyM1,2 but alsoM andM̃ have only real eigenvalues and
thus real eigenfunctions. Thus the representation (29) can be used with the restriction to a
real vector space that thevλ belong to, and this shows finally that

mλ > 0. (30)
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As a consequence of the fact thatPB > 0, the matricesM, M̃ have only real and positive
eigenvalues.

With the eigenvalue problem (27) solved, the solutions of the second-order differential
equations forIm andvρm—see (26) and the nearby text—are easily found as

Iλm ∝ αm
λ uλ vρλm ∝ αm

λ vλ (31)

with

1

2
(αλ + α−1

λ ) = 1 + mλ

1 − mλ

(
1 − αλ

1 + αλ

)2

= mλ.

With mλ > 0, the latter relation is always solved by two real values ofαλ, and their product
equals 1.αλ andα−1

λ correspond to relaxation in either direction along the chain.m0 = 0
gives α0 = α−1

0 = 1, where in the density case a constantdifferencev 1ρ ∝ 1 is the
correct solution of the coupled system (24). Formλ < 1, αλ andα−1

λ are positive, and the
relaxation (in the corresponding mode) is monotonic then. Formλ > 1, αλ and α−1

λ are
negative which yields an alternating relaxation behaviour.

Figure 3. Relaxational behaviour of the channel currents for two transmitters with two channels
each. Formλ = 1.52 the relaxation is alternating and very quick; formλ = 0.20 it is monotonic
and a bit slower. The numerical calculation is done for a chain withM = 20 transmitters totally.
m = 0 means outside the chain; the partial currents there depend strongly on the currents incident
from the left.

The considerations of this section show that the minimal resistance (20) of a single
transmitter is not a mere mathematical lower bound but a value that attains physical
significance as the serial resistance in a sufficiently long chain. This is by no means
self-evident. On the contrary, it is rather unexpected because simple examples, e.g. with
two channels only, show that the optimal current distribution may be characterized by
back-currents in channels of lower transmittivity if the channel–channel coupling is effect-
ive enough. The tendency to minimize the resistance is strong enough to establish such
distributions in the physical reality of a chain.
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In figure 3 two examples for the current relaxation are shown, including alternating
behaviour and the occurrence of back-currents. The numerical data result from a direct
treatment of the coupled-chain problem with arbitrarily chosen incident currents on the left
and/or right. The analytical theory of the relaxation process is not employed.

5. Transmission and reflection for long chains

The very fact that the current and density distributions relax to the stationary distributions
Io andvρo ∝ 1, independently of the incident currents at the ends of the chain, implies that,
as the mathematical formulation of memory loss, the transmission matrices of sufficiently
long chain segments must factorize with the total transmissionT tot

M as the only parameter
that depends on the number of single blocks in the segment. The reflection matrix for
M � 1 comprises a factor term of the same kind and a non-factorized termR̂, too:

M � 1: TM
∼= AMt ◦ t̃ RM

∼= R̂ + BMt ◦ t̃. (32)

Only the coefficientsAM and BM depend onM, in contrast tot and R̂. The values of
AM, BM depend on the chosen normalization oft that can remain unspecified in the present
context. The form (32) has been shown to be asymptotically correct for a resistive wire
[11], and is established in generality in a recent paper by Tartakovski [12].

Figure 4. The inverse total transmission for a chain composed ofM equal transmitters with two
channels each. Two groups with different total single-block transmissions are shown. For the
group withTtot = 1 for the single block, the minimal resistance values for the same transmitters
are also marked in figure 2 by (a), (b), (c) as in the present figure.

For given incident currents at the chain ends, the current and density distributions for
any interval within the chain are uniquely determined by the transmission and reflection
properties of the two segments. If we consider an interval sufficiently distant from the
chain ends, the expressions (32) can be used, with the result

I ∝ (1 − R̂)−1(1 + R̂)1 vρ ∝ 1. (33)
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A proof is sketched in the appendix. This current distribution must be identical with the
optimal single-block distributionIo.

The minimal resistance for a chain segment with any lengthM > 1 is MRo according
to the results of the preceding section. ForM � 1, the resistance formula in (23) applies
for Ro

M = MRo with Ttot replaced byT tot
M and R by R̂. This relation can be read as a

statement on the asymptotic behaviour ofT tot
M :

(T tot
M )−1 ∼= 1

2
MRo + constant (34)

where the constant term has been given in (23), but now withR̂ instead ofR. This is a very
appealing result: the linear term in the inverse total transmission of a long chain defines
the serial resistance of a single block; cf. figure 4. This result corresponds nicely with the
standard model. Note, however, that this model is not employed at all, that an additional
constant term appears in (34), and that the coefficientRo/2 is not equal toT −1

tot for a single
block.

In this paper, we will not discuss further the properties ofR̂. There is only one simple
special case: if already each single block, with reflection matrixR0, shows factorized
transmission, we get simplŷR = R0. In this case equation (34) holds not only asymptotically
but also for anyM > 1. Therefore the right-hand side of (23) defines a strictly additive
quantity for the serial combination of factor blocks that are either identical or only equivalent
in the sense ofR0 → R0 + constant× t ◦ t̃—see below.

In any caseR̂ is only defined up to a ‘gauge’ transformationR̂ → R̂ +αt ◦ t̃—cf. (32).
All physically relevant quantities, especially the constant term in (23) and (34), are ‘gauge
invariant’.

6. Concluding remarks

A short summary of the content is given in the abstract. Finally we only wish to accentuate
certain aspects.

The formulation given can be considered as a generalization of the well-known
Landauer–B̈uttiker approach that is reproduced correctly as a special case. As a by-product
it is shown that the usual equal-feeding rule (for all channels in an ideal lead from a given
reservoir) is a direct consequence of the absence of reflections on the lead side of the
contacts.

The basic aspect of the model is the incoherent coupling of subsystems. Contacts and
reservoirs are special subsystems. Incoherence yields additivity in the classical sense. This
means additivity of dissipated power for a general network and additivity of resistance
for the special serial case. The demand of additivity is strong enough to determine these
additive quantities as functionals of the currents in all of the ingoing and outgoing channels.
A proof of positive definiteness is given, substantiating the general reasoning.

A scheme is established that allows one to consider new kinds of incoherent embedding
for a given transmitter. This possibility is demonstrated explicitly for a long chain composed
of identical transmitters. The results demonstrate that the resistance of a given subsystem
can be very sensitive to the specific kind of embedding. At the same time, for a long chain
as a whole, the dominant role of the total transmission is confirmed anew, and a plausible
rule for extracting the single-block resistance from the total chain transmission is validated.

The chain problem studied is just the probably simplest example. Generalizations, e.g. to
chains with inhomogeneities or disorder, to coupled chains or to two- and three-dimensional
space-filling block arrangements, can be considered along the same lines.
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Independently of the variational approach, a method has been invented to study the
relaxational process in a chain with its discrete block structure. This approach can be
applied for constructing the resulting reflection–transmission behaviour of the chain from
those of its constituents—especially the asymptotic behaviour for long chains. Also in this
respect, generalizations to more complex arrangements can be studied.

Appendix. Distribution between blocks with factorized transmission

Consider the interval between two arbitrary blocks 1 and 2, each of them left–right
symmetric and with factorized transmission as in equation (32). Externally, on both sides,
we have incident currentsI inc

1,2 . Then we get between these two blocks the currents

I ′
+ = (1 − R1R2)

−1(α1t1 + α2R1t2)

I ′
− = (1 − R2R1)

−1(α2t2 + α1R2t1)
(A1)

with αi ∝ tiI
inc
i .

Employing the inverse of

1 − R1R2 = (1 − R1) + (1 − R2) − (1 − R1)(1 − R2) (A2)

we find

I ′ = I ′
+ − I ′

− = (α1 − α2)
[
(1 − R1)

−1 + (1 − R2)
−1 − 1

]−1
1 (A3)

and

vρ′ = I ′
+ + I ′

− = α1(1 + R2)(1 − R2)
−1[. . .]−11 + α2(1 + R1)(1 − R1)

−1[. . .]−11

(A4)

where [. . .]−1 denotes the same matrix as in (A3).
Now we specialize the two factor blocks as long chain segments, i.e.t1 ∝ t2, andR1,2

are both of the form (32). Then, applying the matrix inversion formula (22), we find

(1 − Ri )
−1 = (1 − R̂)−1 + constant× 1 ◦ 1̃ (A5)

and

I ′ ∝ [
(1 − R1)

−1 + (1 − R2)
−1

]−1
1 ∝ (1 + R̂)−1(1 − R̂)1. (A6)

According to section 4, this asymptotic distribution must coincide withIo for a single block.
This is a condition forR̂ that remains to be studied.

The density distribution (A4) is the sum of two similar terms. With

(1 + Ri )(1 − Ri )
−1 = 2(1 − Ri )

−1 − 1 (A7)

and with equations (A5) and (A6), each of them is seen to be of the form

αi

[
(1 − R̂)−1(1 + R̂) + constant× 1 ◦ 1̃

]
(1 + R̂)−1(1 − R̂)1 ∝ 1. (A8)

Thus the simple and general resultvρ′ ∝ 1—cf. section 4—is confirmed.
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